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We propose a new method, the “finite hybrid elements,” to compute the ideal MHD 
spectrum of an axisymmetric plasma. This approach is well suited to calculate even weakly 
unstable internal modes of a tokamak-like plasma. It consists in extending the number of 
variables in the Lagrangian by considering the derivatives of the displacements as addi- 
tional variables and then introducing auxiliary constraints between the variables and their 
derivatives. The discretisation of the problem by extremizing the Lagrangian leads to an 
underestimation of the potential energy, contrary to the standard finite element method. The 
lowest order solution makes each term of the Lagrangian piecewise constant on each mesh 
cell which facilitates the use of numerical equilibria. The results of test cases show a con- 
siderable improvement over the regular finite element method. 

1. INTRODUCTION 

In a previous paper { 1) we proposed the regular finite elements as a method to find 
the ideal MHD spectrum of axisymmetric plasmas. The idea was to choose different 
basis functions for different vector components, such that the incompressibility 
condition V * p = 0 cayl be identically satisfied if necessary. For a straight elliptical 
geometry, we have shown that the fast growing kink modes are well reproduced with 
a reasonable number of mesh cells. However, in a “low-~” tokamak-like plasma, the 
internal modes, with growth rates which are about two orders of magnitude smaller, 
are strongly stabilized due to a poor representation of the B * V-operator. This 
happens already in the straight circular case and it becomes worse with an elliptical 
cross-section. 

In this paper, we apply a completely different method for which we propose the 
name “finite hybrid elements”. The basic idea is to consider the vector components 
and their derivatives as distinct variables which are constrained only at specific points 
in each mesh cell. The basis functions are chosen in such a way that each term in the 
Lagrangian has the same functional dependence. To test the method we apply it to a 
cylindrical geometry. However, applications to axisymmetric geometries have success- 
fully been done (8). In order to present the method, we restrict ourselves to straight 
geometries. No pollution (2) has been observed. The weakly growing modes are 
obtained already with few points, even in situations where it was impossible to find 
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them with the regular finite elements expansion. A shift of the spectrum towards 
higher q-values is observed. This shift shows a quadratic convergence behavior when 
varying the number of azimuthal intervals. In a full two-dimensional, straight elliptical 
test case, we eliminate the shift and find a 4th order superconvergence of the eigen- 
value which is approached from below ! 

In conclusion, we have found that it is not possible to brutishly apply the standard 
finite element method to the Lagrangian. The unstable modes are nearly incom- 
pressible and the internal modes are characterized by the operator B * V vanishing 
exactly on a singular surface. To correctly represent all the unstable modes, it is 
necessary to respect these features by an adequate approximation scheme. The finite 
hybrid element method, proposed here as the ultimate solution, may not be the only 
possibility, but it has shown computational advantages. It is well adapted to the study 
of numerically determined equilibria, and it is easy to implement. 

2. THE PROBLEM 

The variation of the Lagrangian (3) in ideal MHD can be written symbolically as 

6L 
( 
+-,~,g, Y,~,Z)=O 

a* 
(1) 

where X, Y and 2 are related to the displacement components & , sZ and &. by (3) 

K y, a = UG , sz > t*m. (2) 

The independent variables #, z and x are orthogonal and denote the radial, the 
ignorable axial and the azimuthal directions, respectively. BP denotes the poloidal 
magnetic field and J is the Jacobian. The most important feature of the variational 
form, Eq. (l), is that there is only one radial derivative which acts on the radial 
component X. 

We intend to study only internal modes which numerically are difficult to calculate 
(1). In order to specifically treat these modes, we put the conducting wall right on 
the plasma surface. The boundary condition thenbecomes 

alfr = 16s 7 x> = 0. (3) 

The subscript s always denotes the plasma surface. 
In addition we have to prescribe a regularity condition on the magnetic axis, 

X(t) = 0, x) = 0 

and the periodicity conditions in x give 

a+, x = 0) = xc+, x = 2771 

Y(gf, x = 0) = Y(#, x = 24 
z(*, x = 0) = Z(#, x = 277). 

(4) 

(5) 
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Equation (I), together with the constraints (3), (4) and (5), completely define the 
problem. 

When we treated Eq. (1) by a regular finite element expansion {l} we found that we 
were not able to full?1 the condition 

B-l7(J*f)=z+ikJB,f=O (6) 

on a singular surface. Here B, denotes the longitudinal magnetic field, and k is the 
longitudinal wave number.fcan be either X, Y or Z. 

As a basically new idea, we look for a method where (af/lax) and f have the same 
functional dependence. This can be obtained by Fourier analyzing the problem as 
previously done by Kerner et al. (4) and by the Princeton group (5). The finite hybrid 
element expansion, as an alternative method, consists in expanding the function f and 
its derivatives (af/lax) and (af/la$) by different basis functions. Instead of solving the 
problem (1) we solve 

&L (z$! , X(2), s$! ) ?g ) yw, z&g ) 2’2’) 

restricted by the evident identities 

p’ = X(2’ = X(3’ 

yc1, = yc2, 

Z’l’ = Z(2). 

(7) 

(8) 

The original problem is reobtained when the identities, Eqs. (8), are substituted back 
into Eq. (7). In our approach, however, we vary the Lagrangian over all 7 variables 
X(l), X(2), X(3), y(l), y(2), Z(1) and Z(2), and do not impose the identities in Eqs. (8) 
everywhere, but only on specific points in each mesh cell. To prepare the discretisation 
of the problem, we rewrite the constraits (8) in the equivalent forms 

lii + f, (X(2) - F’) d7 = 0, VA EL’ 

Iii 4 s, (P2’ - Xc3’) d7 = 0, VA E Sz 

lii + s (Yc2) - Y(l)) dT = 0, VA EQ 
A 

lii & j- (Zc2) - Z(l)) dr = 0, VA EL’ 
A 

(9) 

where 52 denotes the plasma domain. 
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3. DISCRETISATION 

In order to discretise the problem we cover the domain Q with a rectangular mesh 
(N$ x NJ in 4 and x. We want to use a finite element expansion of the variables 
X(I), X@), X@), Y(l), Y@), Z(l) and PJ which satisfies two requirements: 

- each argument in Eq. (7) has the same functional dependence on 4 and x, 
-the constraints (9) are satisfied when d is identified with the size of a mesh cell 

. dij , such that 

& lAij (Xfz) - X(l)) da,b dx = 0, 
23 

& IAij (x(2’ - ~‘1 d# dx = 0, 
23 

1 
--I Aii Aij 

(y(2) - Y(l)) d# dx = 0, 

-& IA,, (z’~’ - Z(l)) d# dx = 0, 
23 

Vi, j 

Vi, j 

Vi, j 

Vi, j 

(10) 

These conditions do not uniquely determine the elements, so that we still can choose 
the order. We make the simplest choice possible by requiring that each argument in 
Eq. (7) be constant on each mesh cell. 

Calling ci++,i the basis functions for X(r), Y(l) and Zd),fi+t,i+t the basis functions 
for Xf2), Yc2) and Zc2) 3 and gij++ as the basis functions for X@), the expansion can be 
written: 

where the position of the nodal values in a mesh cell are shown in Fig. 1 and the shape 
of the corresponding basis functions are shown in Fig. 2. 

Note, that ei+&) is a function linear in x and piecewise constant in #. The x 
derivative of such an element is piecewise constant. A similar roof function, linear in 
# and constant in x, is used for gii+*(#), such that the ~+4 derivative be piecewise 
constant. The basis for J;.++i++ is piecewise constant. The first requirement is then 
satisfied. 
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FIG. 1. Position of the nodal values in a mesh cell for the “finite hybrid elements.” 

1: 
I ’ 

f 
\ ; /fx D I )-- -I-- j+l 

,;-/_-- _lj 
%2jtXl 

/ 
i i+l -4J 

I 

I f3 1 X 

1’ 
A.___ -- 1<, 

i;j i+l 
-9 

’ 1 
/ A ,I’ 1 

,+-;J_ YX 
---- j+l 9ij+l/2 19 1 

I 

i;j id --J, 

FIG. 2. Shape of the basis functions ei+I/z j(x) for the expansion of A’(“, Y(l), ad Z’” Offi+lh j+l,a 
for the expansion of X’*‘, Ycaj and Z@J and of gu+&) for the expansion of X@‘. 

Substituting the expansion (11) into the second requirements, Eq. (lo), leads to the 
following relations: 

(12) 

5Wz6/3-9 
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Note that X(l), X@) and X@) are equal at the center of each mesh cell. The same is true 
for Y(l), Y@) and Z(l), Zt2). Since in the Lagrangian, Eq. (7), all the functions and their 
derivatives are piecewise constant, the equilibrium is also taken piecewise constant. 
This is done by replacing the coefficients in the Lagrangian by their values at the 
center of each cell. 

Equations (12) able us to eliminate X(l), Xt2), Yc2) and Zt2). The remaining unknowns 
are then X& , Y/i)+ j and Zji’+ j . With this choice the boundary conditions (3,4) take 
the simple form 

X(3! 0 3+s =o 

X$Lj+* = 0 
O<j<N,-1 

and the periodicity conditions (5) in X yield 

(13) 

z$o = z$, Nx 

We can now verify that 

and 

B - AJX = F + ikJBzXc2), 

being piecewise constant, can indeed vanish over each mesh cell. 
Compared with the usual finite element method (1) the additional freedom intro- 

duced by the enlargement of the functional space leads to lower energy level. This 
helps to separate better the weakly growing unstable mode from the stable continuous 
region. 

The variational form given by Eq. (7) contains 7N,N, + 3N, + N, variables. The 
regularity condition (4) fixes N, variables. For a wall constrained plasma, the boundary 
condition (3) fixes also N, variables. The periodicity conditions, Eqs. (14), eliminate 
3N, unknowns and the identities (12) reduce the number of unknowns by 4N$N,. For 
the case with a vacuum region there remain 3N,N, nodal values and for a wall con- 
strained case there are 3N,N, - N, unknowns. 
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A code has been written which uses this method. Various tests have been run. The 
results are compared with results obtained using our 1-D code and a regular finite 
element expansion {I>. 

4. APPLICATION TO THE CYLINDRICAL CASE AND COMPARISON WITH REGULAR ELEMENTS 

The first test case consists of a straight circular plasma column of constant density p, 
traversed by a longitudinal current of constant intensity j and imbedded in a homo- 
geneous field B, . A rigid boundary is placed right on the plasma surface. Because of 
the symmetry, the spectrum can be computed for each azimuthal wave number m by 
one-dimensional code THALTA (6). We consider the case m = 1 and m = 2. We 
normalize all our calculations to the Alfven speed, i.e., on wa2 = k2Bz2/pR2 = j2/4p, 
where R is the radius of the plasma surface. The homogeneous current density was 
chosen to be j = 0.4 B,/R. The number of radial intervals was taken to be & = 12 
throughout the whole m = 1 calculations. For m = 2, N$ varies. For simplicity we 
always choose the number of azimuthal intervals N, to be 2N, in the full range 
0 < x < 2~. Making use of the symmetry, the code only uses half the number of 
azimuthal intervals in the range 0 < x < 7~. Figures 3a-b show the results for the 
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0.01 . 

FIG. 3. Comparison of the first 5 fundamental radial modes of the wall constrained circular test 
case, using: (a) regular finite elements {l}, (b) finite hybrid elements with a piecewise constant equilib- 
rium. The solid lines denote the results obtained with THALIA {6} which can be considered as 
exact. 

m = 1 case. The square of the growth rates r2 of the internal modes is plotted versus 
the safety factor q = krB,/B, = 5kR. The solid curves represent the results obtained 
with the I-D code (6). The small circles are results obtained with: 

a) Regular finite elements as described in {I}. 
b) Finite hybrid elements. 
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The results in Fig. 3a show a rather large discrepancy with the 1-D results. In both 
cases the spectra are not polluted (2). This can be seen by studying the unstable part 
of the spectrum at q = 1. Here, an infinite number of unstable fundamental modes 
should be observed. Numerically, this means that N& - 1 modes are unstable when 
N& radial intervals are taken. Thus, at q = 1, with N$ = 12, one should find 11 
unstable Alfven modes. It is surprising that one obtains 9 of them in the highly 
stabilized case (a). The stabilizing effect due to the coupling between the modes must 
therefore diminish for higher radial Alfven modes. From these results we expect that 
the coupling effect, observed in Fig. 3a, disappears when an infinite number of mesh 
cells are taken, e.g. no pollution. In case (b) only 8 unstable displacement vectors are 
found at q = 1. This comes from the fact that there is a shift of the growth rate curves 
by 0.6 % towards higher q-values. When one counts the number of negative values of 
w2 at q = 1.006, one finds all the 11 modes unstable. This shift of the whole spectrum 
depends mostly on the number of azimuthal intervals N, and little on N& . 

It is more difficult to calculate the unstable part of the m = 2 spectrum. The 
maximum growth rate is 8 times smaller than that obtained in the m = 1 spectrum, 
and the eigenfunction varies twice as rapidly in the angular direction. No unstable 
modes are found in this case with the regular finite elements method, even when 20 
azimuthal intervals are taken in half the range (N, = 40). Using finite hybrid elements, 
however, we obtain, with high accuracy, the whole unstable part of the spectrum as 
shown in Fig. 4. This shift towards higher q-values is more pronounced for a given 
number of mesh points. At q = 2.017, for example, we again find that all 11 funda- 
mental modes are unstable! The cross at the upper right hand corner of Fig. 4 at 
q = 2.11 is the maximum value of P obtained when taking only N, = 16 azimuthal 
intervals. This value differs only by 5 % from the maximum obtained with the I-D 

2.017 

FIG. 4. Unstable part of the m = 2 spectrum of the wall constrained cylindrical test case, kR = 
0.2. The solid curves represent the “exact” 1-D results. The small circles are the results of the 2-D 
calculations performed with the finite hybrid element method using a piecewise constant equilibrium, 
N, = 40. The cross at the upper right hand corner at CJ = 2.11 is the maximum of the most unstable 
mode obtained with N, = 16. No unstable modes are obtained with regular finite elements. 
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code. Note, that the maximum growth rate is over-estimated. This can never happen 
with regular finite elements, where one always approaches the most unstable mode 
from the stable side. 

Let us now study the dependence of the shift as a function of the number of azi- 
muthal intervals. The relative shift in q as a function of 1/NX2 is shown in Fig. 5 for 
m = 2. The straight line corresponds to a quadratic convergence of the shifted 
discretised spectrum. The convergence is to the “extact” 1-D result (A’, -+ co). 

FIG. 5. Relative shift (q - m)/m of the spectrum calculated with finite hybrid elements and a 
piecewise constant equilibrium versus l/N, . * The straight line corresponds to a quadratic con- 
vergence. 

5. STRAIGHT ELLIPTICAL TEST CASE 

As a second test, we consider a full two-dimensional case, the Gajewski equilibrium. 
It consists of a straight elliptical plasma column imbedded in a uniform magnetic 
field B, . The mass density p and the longitudinal current densityj are chosen constant. 
The surfaces of constant magnetic flux # are similar ellipses. We denote by E the ratio 
of the large axis to the small axis. The frequency is normalized to oa2 = 2j2/p(l + ~3”. 
This equilibrium is the same as considered by Dewar et al. (7). The results have all 
been obtained with the current density fixed at j = OAB,lR and E = 1.5. 

The growth rate of the most unstable mode has the same kind of dependence on q 
as shown in Figs. 3 and 4. The value of k which corresponds to the maximum growth 
rate varies with iV, . Figure 6 shows a plot of the maxium value of the growth rate 
squared r2 versus NL~. The fact that the points lie on a straight line means a 4th order 
superconvergence for r2 as a function of N, . This is surprising, since a quadratic 
convergence was expected from the order of the elements. Note, that throughout the 
whole range of iV, studied, r2 varies only by 4 % ! In our previous paper {I} we made 
the same convergence study with regular finite elements for the same mode. There we 
did not find any evident quadratic convergence behavior even when taking up to 
48 azimuthal intervals. 



388 R. GRUBER 

FIG. 6. Convergence study of the maximum growth rate as a function of 1/NX4 for the elliptical 
test case, r = 1.5. The shift of P(q) towards higher q-values has been taken into account. The 
straight line denotes a 4th order superconvergence. 

These results show that the finite hybrid element method can indeed reproduce the 
weakly growing internal modes with only a few mesh cells. The shift in q of 
the spectrum is not important as long as the characteristic features of the spectrum 
are well reproduced, namely the growth rates and the eigenfunctions. 

6. CONCLUSIONS 

We have proposed a new method for which we propose the name “finite hybrid 
element”, to calculate the ideal 2-D MHD spectrum. The idea of the method is to 
choose a representation such that each term of the variational form has the same 
functional dependence and thus, exact cancelation between terms can occur. The 
method has been applied to straight circular and straight elliptical geometries. It has 
shown an impressive improvement over previous results obtained with regular finite 
elements. In all the fixed boundary cases which have been studied, we have found a 
4th order superconvergence, when the shift towards higher q-values is eliminated. 

From the technical point of view this method has advantages compared to the 
regular finite elements: 

- The sizes of the matrices are smaller for the same number of mesh cells. 

- The integration is trivial since all terms in the Lagrangian are piecewise constant. 

- The method is particularly well suited for the stability calculation of numerically 
determined equilibria. 

Since the completion of this work the code is being extended to deal with any 
axisymmetric toroidal configuration (8). Among the new features, let us mention the 
inclusion of the vacuum region, a non-orthogonal coordinate system and an interface 
which allows numerical equilibrium to be used as input. We think that our finite 
hybrid element code will be a very powerful tool to study the ideal MHD instabilities 
of axisymmetric toroidal plasmas. 
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